Multipacting Simulations for Power Couplers

Frank Krawczyk Los Alamos National Laboratory

presented at the

Workshop on High-Power Couplers for Superconducting Accelerators

Jefferson Lab, Newport News, Virginia October 30 - November 1, 2002

Multipacting

- Consideration of multipacting is important for new accelerator developments:
 - high current linacs:
 - higher power levels in power couplers
 - higher gradient structures
 - new β < 1 RF-structures
 - Increasing importance of 3D effects

Multipacting

Definition:

"An electron emitted from a wall under the influence of RF fields returns to its origin in an integer number of RFcycles. The impact creates more than one new electron, and thus a cascade of multiplying electrons is created."

Figure 10.7: Typical one-point multipacting trajectories for orders one, two, and three.

^{*} Taken from "RF Superconductivity for Accelerators", Padamsee, Knobloch and Hays

Techniques to Deal with Multipacting

- Do designs that avoid multipacting:
 - Changing the geometry:

* Taken from "RF Superconductivity -

A Primer", by Padamsee (http://www.lns.cornell.edu/public/CESR/ SRF/BasicSRF/SRFBas12.html)

- Using different materials
- Applying coatings (SEY)
- Shifting multipacting levels (e.g. by biasing)
- RF-conditioning of structures
- Improving surface cleaning procedures (SEY)

Techniques to Deal with Multipacting

Decision Process:

- 1. Experimentally: build, learn, modify
- 2. Analytic/empiric estimates:
 - Scaling laws
 - work for simple geometries (e.g. coaxial lines)
 - local approximations at RF-surfaces
- 3. Full simulations of fields and particles (2D and 3D)

Groups Working on Multipacting

- A variety of groups are working with different the analytic and numerical approaches
- There are similarities in procedures for the simulation approach
- The major part of the presentation will focus on this simulation approach
- The important steps in the simulation procedures will be presented.
- The presently active groups and their techniques will be presented
- The presentation will end with some examples

Analytic/Empirical Approach to Multipacting

• 1-point scaling law in coaxial lines: $P_{MP} \sim (f^*d)^4 Z^1$

• 2-point scaling law in coaxial lines: $P_{MP} \sim (f^*d)^4 Z^2$

- Hatch diagram: MP-levels as function of (f*d)
- CERN (J. Tückmantel): local parameters from a 2D field map to judge multipacting conditions without particle tracking (WS 89)
- KEK (K. Saito): Empirical formula for 2-point multipacting in elliptical cavities

Simulation Approach to Multipacting

- 2D: gaps, coaxial lines, rotationally symmetric resonators
- 3D: arbitrary shaped resonators, RF-couplers
- Geometry description
- EM-field description (quality of surface field)
- Surface property description (SEY)(accurate knowledge)
- Particle description: location, energy, (re-)emission
- Scanning of parameter space (field levels, particle energies, rf -phases, emission angles)
- Statistics to identify recurrence patterns

Simulation Approach to Multipacting

Geometry +
EM Field
Description

Geometry and Fields

Surface Field Quality

Simulation Approach to Multipacting

Introduction of particles and material properties into original or processed fields:
Scan parameter space (particle and field related) for many particles

Introduction of Particles

* Taken from work done by P. Ylae-Oijala for the SNS project

Trajectories: Multipacting in Coaxial Line

Trajectories: Multipacting in SNS Window/Choke

* Taken from work done by P. Ylae-Oijala for the SNS project

Simulation Approach to Multipacting

Statistics to identify recurrence, multiplication

Secondary Emission Model

* G. Devanz, CEA Saclay, SFP Meeting in Roscoff in 2000

Statistics

Groups Working on Multipacting

	Code	EM Fields	Particles	Emission	Geometry	Scanning	Decisions
Genoa	TRAJECT TWTRAJ	OSCAR2D	Newton	Angle to surface, SE, scattering	2D	$E_{kin},E_{a},s,\alpha,\phi$	Spatial or time focusing
Helsinki	MultiPac	Included	RK	Normal to surface, SE	2D/(3D)	E _a , s	Enhanced Counter- functions
Cornell I	MULTIP	SUPERLANS Superfish	Leapfrog	Angle to surface, SE, FE	2D	E_{kin} , E_a , s , ϕ , α	Spatial focusing
Cornell II	XING	MAFIA, analytic SUPERLANS	Leapfrog RK(4th)	Normal to surface, SE	3D/2D	E _a , s, φ	Enhanced Counter- functions
Moscow	MULTP	MAFIA	Leapfrog	Angle to surface, SE	3D	Ea, s, ϕ	Phase Focusing
UNM	(TRAK) TRAK-3D	Included	RK	Angle to surface, SE	(2D)/3D	$E_{kin}, E_a, s, \alpha, \phi$	Spatial focusing
Saclay	MUPAC	Superfish	RK (4th-5th)	Angle to surface, SE	2D	E _a , s, φ	Enhanced Counter- functions

Example: Scaling for Coaxial Line Size

1. Criterium: Multipacting vs. Beam Power:

Single Point MP levels compared between CERN and derived ADTF scenarios

Order	CERN	ED&D-103	ED&D-100	APT-Geo
	352 MHz	350 MHz	350 MHz	350 MHz
	75Ω	75 Ω	75 Ω	50 Ω
7	48 kW	47 kW	42 kW	28 kW
6	52 kW	51 kW	45 kW	30 kW
5	88 kW	86 kW	76 kW	51 kW
4	176 kW	172 kW	153 kW	102 kW
3	234 kW	229 kW	204 kW	136 kW
2	448 kW	438 kW	389 kW	259 kW
1	640 kW	626 kW	556 kW	371 kW

Average Input Power Levels for the Spoke Resonators (φ=–30°)

	13.3 mA	100 mA		
β =0.175	6 kW	43 kW		
β=0.34	19.5 kW	144 kW		
for E ₀ T = 5 MV/m				

	13.3 mA	100 mA		
β=0.175	8.5 kW	63.6 kW		
β=0.34	28.2 kW	211.8 kW		
for E ₀ T = 7.5 MV/m				

2. Cavity Size: The β=0.175 cavity is limited to coax sizes around approximately 100 mm

Example: Multipacting Sims vs. Experiment (TESLA)

- 50 Ohms
- 61.6 mm

Example: Straight Coax vs. Tapers

Example: Cold Windows

* D. Proch: "Techniques in High-power Components for SRF Cavities-a Look to the Future", Linac 2002

Coupler conditioning issues

- Controlled desorption of absorbed gases by multipacting electrons
- Compromise must be found between conditioning speed and sparking risk
- Cold surfaces of couplers for SRF cavities collect cryosorbed gases
 - Warm conditioning does not attack the real enemy
 - Cryosorbed gases might show up more severe after some cold operation
- Conditioning with standing wave (no beam) will not clean all surfaces as probed by traveling wave (beam loading), additional tricks are required

* D. Proch: "Techniques in High-power Components for SRF Cavities-a Look to the Future", Linac 2002

Summary

- Couplers for each application have to be individually adapted.
- Where analytic/empirical approaches are not sufficient, numerical tools (mostly for 2D) do exist and have been successfully benchmarked.
- The basic simulation procedure for existing software has been illustrated.
- Results of simulations have been compared with experimental results.
- Two examples of coupler features that need careful consideration have been shown.

Acknowledgements

Information, graphs, figures and results have been provided by:

- Ricky Campisi and Pasi Ylae-Ojiala for SNS
- Dieter Proch, DESY
- Brian Rusnak, LLNL
- Guillaume Devanz, Saclay
- Hasan Padamsee's group, Cornell
- Gennady Romanov, FNAL

